Guidance, Navigation and Control
XU Yiqi, WANG Shuo, YAN Wei, WU Anlin, ZHENG Xuan, WANG Long
Aerospace Control.
2024, 42(5):
3-8.
The design scheme and in-orbit verification results of the high-precision star tracker is presented, which is used in the Shenzhou series of spacecraft in China. In the lens design, a front-placed diaphragm structure is adopted to meet the needs of miniaturization and long-term applications; In the overall structure design, a "frame combination wrap-around" integrated structure is adopted to focus on lightweight and stability; In the circuit design,radiation-resistant reinforced APS image sensors, processors and ASIC are applied to ensurance of high-sensitivity detection and high-reliable information processing throughout the service life; In the algorithm, clustering extraction, fast triangular recognition, curtain compensation and dynamic adjustment of exposure time, etc. are used to achieve key performance indicators such as precision, update rate, dynamic and capture; In addition, the thermal stability of the whole machine is improved to ensure that the performance of the star tracker can be maintained. The star tracker is successfully applied to a series of major space projects, including manned spaceflight, lunar exploration and Beidou-3 which have more than 200 units in orbit operation.