
Launch Vehicle Abort Capability Evaluation Based on Hybrid Optimal Control
Xie Yongfeng, Chen Jiaye, Han Dong, Nan Jinghong, Zheng Lili
Aerospace Control ›› 2022, Vol. 40 ›› Issue (1) : 29-36.
Launch Vehicle Abort Capability Evaluation Based on Hybrid Optimal Control
In order to improve the flight reliability under failures of the launch vehicle, an autonomous mission planning strategy for multi-stage-to-orbit launch vehicle under failures is proposed. Hybrid optimal control is used for mission planning modelling. Abort logic system and rapid trajectory reshaping method under unified framework are proposed to evaluate abort capability and to reshape optimal trajectories for the booster and the upper stage. Flight simulation under engine throttle failures shows that the proposed method can perform optimal trajectory reshaping on the basis of abort capability evaluation to maximize the mission completion capability. The proposed method can also be extended to the overall design stage of launch vehicles to analyze the influence on different parameters and determine the optimal parameters.
Hybrid optimal control / Abort capability / Emergency return / Mission planning / Trajectory reshaping {{custom_keyword}} /
表1 故障时刻的高度和速度 |
tfailure/s | h/km | V/(m/s) |
---|---|---|
21 | 0.721 | 79.9 |
46 | 4.020 | 211.6 |
117 | 27.66 | 1029.5 |
表2 节流阀故障下中止轨道参数 |
故障模式 | tfailure/s | ts/s | hs/km | Vs/(m/s) | t2f/s | m2f/kg | t1f/s |
---|---|---|---|---|---|---|---|
0.65≤η≤1 | 168.37 | 48.688 | 2868.1 | 1012.3 | 2927.1 | 1080.8 | |
0.65≤η≤0.85 | 21 | 183.95 | 51.438 | 2814.9 | 876.92 | 2895.4 | 1127.6 |
46 | 180.15 | 50.478 | 2856.2 | 1116.3 | 2853.6 | 1090.2 | |
117 | 174.83 | 50.895 | 2860.4 | 1195.6 | 2876.3 | 1104.9 | |
0.65≤η≤0.7 | 21 | 216.37 | 53.096 | 2675.3 | 1275.7 | 2773.8 | 1149.5 |
46 | 205.87 | 53.348 | 2794.3 | 1045.3 | 2834.5 | 1134.7 | |
117 | 186.77 | 52.805 | 2844.0 | 882.41 | 2872.6 | 1094.6 |
[1] |
王辰, 王小军, 张宏剑, 等. 可重复使用运载火箭发展研究[J]. 飞航导弹, 2018 (9): 18-26.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2014, 35(1): 13-28.
深空探测器距离地球远、所处环境复杂、苛刻,利用地面测控站进行深空探测器的遥测和遥控已经很难满足探测器控制的实时性和安全性要求。深空探测器自主技术即通过在探测器上构建一个智能自主管理软件系统,自主地进行工程任务与科学任务的规划调度、命令执行、星上状态的监测与故障时的系统重构,完成无人参与情况下的探测器长时间自主安全运行,自主技术已经逐渐成为深空探测领域未来发展的一项关键技术。本文首先分析了传统测控模式对深空探测的约束,回顾了深空探测器自主技术发展的现状,分析了实现深空探测器自主运行的关键技术,包括在轨自主管理系统设计技术、自主任务规划技术、自主导航与控制技术、自主故障处理技术和自主科学任务操作技术。然后结合深空探测工程实施和技术发展需求,提出未来深空探测器自主技术发展的趋势和重点。
(
During the process of deep space exploration, the explorer is far away from the Earth while the environment around it is complex and harsh. Therefore it is difficult for ground stations with telecontrol and telemetry to satisfy the real-time and safety requirements of control systems for the deep space explorer. Autonomy technology then becomes a key to deep space exploration. An on-board autonomous management software system is used to enable the planning and scheduling of engineering and science tasks, execute commands, monitor states of the explorer and reconfigue the system when faults arise, all of which guarantees the autonomous and safe on-board operation without commands from the ground in the long cause of exploration. This paper first analyzed the limits of the traditional measuring and controlling mode for deep space exploration and reviewed the state of the art of autonomy technology. Then, it analyzed the key techniques of the autonomy of the explorer, which consisted of on-board autonomous management system designing, autonomous mission planning, autonomous navigation and control, autonomous fault processing and recovery, and autonomous operation of scientific mission. Finally, combined with the engineering implementation and technology requirements of deep space exploration, the paper envisaged the development trends and key points of autonomous technology of deep space explorers in future. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
冯小恩, 李玉庆, 杨晨, 等. 面向自主运行的深空探测航天器体系结构设计及自主任务规划方法. 控制理论与应用, 2019, 36(12): 2035-2041.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
张洪波. 航天器轨道力学理论与方法[M]. 北京: 国防工业出版社, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
马昊磊, 陈攀, 徐帆, 等. 一种基于任务分区的轨道转移飞行器轨迹重规划方法. 航天控制, 2020, 38(3): 10-16.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
解永锋, 唐硕. 基于伪谱反馈控制的亚轨道返回在线轨道重构方法[J]. 宇航学报. 2012, 33(8): 1056-1063.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |