
Adaptive Event-Triggered Control for Spacecraft Attitude Tracking
Lin Zijie, Lu Guoping, Lv Wang, Wu Baolin
Aerospace Control ›› 2021, Vol. 39 ›› Issue (1) : 32-39.
Adaptive Event-Triggered Control for Spacecraft Attitude Tracking
An adaptive control law based on an event-triggered control strategy is proposed to solve the problem of attitude tracking control under the constraints of communication resources between plug-and-play wireless small satellite modules and the difficulty of obtaining the accurate inertia information of spacecraft. In the process of tracking control, the moment of inertia matrix is estimated by adaptive control law in this algorithm, and event driven control strategy is introduced. Under the event-triggered control scheme, the controller is updated only when the triggered conditions are fully set, which can effectively optimize the communication frequency among modules. Then, based on Lyapunov method, the asymptotic boundedness stability of the closed-loop control system is proven that there is a positive lower bound among adjacent triggered instants to ensure that Zeno behavior will not occur. Finally, the numerical simulation results verify the effectiveness of the control algorithm.
Spacecraft attitude tracking / Event-triggered control / Adaptive control / Limited communication to actuator / Uncertainty {{custom_keyword}} /
表1 事件驱动参数与跟踪精度及总线负载 |
序号 | α | γ | 姿态角跟踪精度(°) | 姿态角速度跟踪精度((°)/s) | 300s触发次数 | 标称负载(10-1) | 相对负载 |
---|---|---|---|---|---|---|---|
1 | 0.0 | 0.00 | 0.020 | 0.005 | 3000 | 1.3300 | 1.0000 |
2 | 0.1 | 0.05 | 0.021 | 0.013 | 415 | 0.1104 | 0.0830 |
3 | 0.2 | 0.05 | 0.023 | 0.013 | 391 | 0.1040 | 0.0782 |
4 | 0.5 | 0.05 | 0.028 | 0.015 | 208 | 0.0920 | 0.0692 |
5 | 0.5 | 0.04 | 0.025 | 0.013 | 399 | 0.1061 | 0.0798 |
6 | 0.5 | 0.01 | 0.021 | 0.005 | 1227 | 0.3264 | 0.2454 |
[1] |
孙兆伟, 邢磊, 徐国栋, 等. 卫星内无线射频总线设计[J]. 哈尔滨工程大学学报, 2012, 33(7): 881-886.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
胡庆雷, 周稼康, 马广富. 无需角速度的含通信时延卫星编队飞行自适应姿态协同跟踪控制[J]. 自动化学报, 2012, 38(3): 462-468.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
袁彬彬. 基于滑模/事件驱动的航天器编队姿态协同控制[D]. 北京: 北京理工大学, 2016.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
孙帅, 王磊, 王志文. 基于事件触发的航天器变周期控制方法研究[J]. 空间控制技术与应用, 2018, 44(2): 31-35+41.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
张嘉芮, 陈弈澄, 董新蕾, 等. 基于事件触发的航天器姿态自适应容错控制[J]. 飞控与探测, 2020, 3(2): 17-25.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
王首喆, 张庆展, 靳永强, 等. 带挠性附件航天器在轨质量特性辨识[J]. 航天控制, 2017, 35(5): 9-14+36.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
黄攀峰, 王眀, 常海涛, 等. 失效航天器的姿态机动接管控制[J]. 宇航学报, 2016, 37(8): 924-935.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
屠圆圆, 王大轶, 李文博, 等. 执行机构故障卫星的自适应模糊滑模容错控制[J]. 航天控制, 2017, 35(5): 51-57.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
崔美瑜, 徐世杰. 基于直接自适应控制的挠性航天器高精度姿态控制[J]. 航天控制, 2011, 29(5): 35-39+47.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
魏才盛, 罗建军, 殷泽阳. 航天器姿态预设性能控制方法综述[J]. 宇航学报, 2019, 40(10): 1167-1176.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
白圣建, 黄新生. 参数不确定挠性航天器的姿态跟踪控制[J]. 航天控制, 2010, 28(3): 24-28.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |