
大挠性航天器的模糊模型预测控制*
Fuzzy Model Predictive Attitude Control for Large Flexible Spacecraft
针对带有大型挠性附件的航天器姿态控制系统,将自适应模糊控制和模型预测控制相结合,设计了大挠性航天器的模糊模型预测姿态控制策略。基于大挠性航天器的动力学模型,采用泰勒展开设计出了非线性模型预测控制律,避免了预测控制在线优化过程中繁琐的计算,有效降低了计算复杂度。针对大挠性附件振动导致的不确定性扰动对姿态控制的影响,使用自适应模糊控制来逼近不确定扰动。基于Lyapunov理论证明了控制系统的稳定性,并推导了模糊参数的自适应律。仿真结果表明所设计的控制策略对大挠性附件振动有很好的抑制作用,可以控制姿态角对期望值实现快速跟踪,具有较好的控制特性。
By considering the attitude control system of the spacecraft with large flexible appendages, the fuzzy model predictive attitude control strategy for large flexible spacecraft is designed by combining adaptive fuzzy control with model predictive control. Based on the dynamic model of the large flexible spacecraft, a nonlinear model predictive control law is derived by using Taylor equation, which avoids the huge calculation burden in the online optimization process of predictive control. The computational complexity is effectively reduced. Aiming at the uncertain disturbance caused by large flexible appendages vibration, the adaptive fuzzy control is used to approach the uncertain disturbance. Based on the Lyapunov theory, the stability of the designed attitude control system is proven, and the adaptive law of fuzzy controller parameters is derived. The simulation results show that the designed attitude control strategy can effectively suppress the vibration of large flexible appendages, the expected value of the attitude angle of spacecraft can be reached quickly and accurately, which presents better control performance.
大挠性航天器 / 姿态控制 / 模型预测控制 / 模糊控制 {{custom_keyword}} /
Larger flexible spacecraft / Attitude control / Model predictive control / Fuzzy control {{custom_keyword}} /
[1] |
曹登庆, 白坤朝, 丁虎, 等. 大型柔性航天器动力学与振动控制研究进展[J]. 力学学报, 2019, 51(1): 1-13.
随着航天重大工程的逐步实施,航天器正朝着超高速、超大尺度、多功能的方向发展,其面临的发射和运行环境也更加恶劣.航天器发射过程中的振动及其主/被动控制、在轨运行中大型柔性航天器动力学建模与动态响应分析、结构振动与飞行器姿态的混合控制等问题越来越复杂且难于处理;航天器结构的大型化和柔性化(如大阵面天线和太阳翼等)也对其地面试验和半实物仿真提出了挑战.本文着重介绍大型柔性航天器涉及到的动力学与振动控制问题,包括航天器发射过程中的整星隔振,大型柔性结构动力学建模与振动响应分析,大型柔性航天器的结构振动与姿轨控耦合动力学及其混合控制等.提炼出航天动力学与控制领域中亟待解决的若干基础科学问题,包括:多刚柔体系统动力学建模与模型降阶(涉及大变形柔性体动力学建模、多求解器合作仿真、模型降阶、组合结构动力学建模的解析方法等);复杂结构状态空间模型构建方法与能控性(涉及状态空间模型构建的理论与实验方法、复杂结构振动控制系统的能观性与能控性等);航天器姿态运动与大型柔性结构振动的混合控制律设计(涉及姿态机动与结构振动的鲁棒混合控制、执行机构与压电控制器的协同控制等).
(
With the gradual implementation of the major projects in aerospace engineering, the spacecraft design is heading towards the direction of ultra-high speed, large scale and multi-function, and its launching and operating environment is likely to worsen. The problems on vibration and active and/or passive control in spacecraft launching process, dynamic modeling and response analysis of large flexible spacecraft in orbit, and the hybrid control of structural vibration and attitude maneuver of the spacecraft are getting more and more complicated and difficult to deal with. The enlarged scale and increased flexibility of the spacecraft structure (suchas the large aperture antenna and solar panels) present a challenge to the ground test and semi-physical simulation. The dynamics and control problems involved in the large-scale flexible spacecraft such as the whole-spacecraft vibration isolation in the spacecraft lunching process, the dynamic modeling and vibration response analysis of large-scale flexible structures, and the coupling dynamics and hybrid control of structural vibration and attitude and or orbital maneuver of the large-scale flexible spacecraft are presented. The key scientific issues seriously in the fields of spacecraft dynamics and control could then be extracted as follows: the dynamic modeling and order reduction of multi-rigid flexible body systems (including the dynamic modeling of the flexible structure with large deformation, the collaborate simulations with multi-solvers, model reductions, the analytical approach for the dynamic modeling of composite structures, etc.), the construction of state space model of complicated structures and its controllability investigation (including the theoretical and experiment methods of the state space model formulation, the observability and controllability of the control system for complex structures, etc.), and the design of hybrid control law of structural vibration and attitude maneuver for the large-scale flexible spacecraft (concerning the robust hybrid control of attitude maneuver and structural vibration, the collaborative control of actuating mechanism and piezoelectric actuator, etc. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
王璐, 郭毓, 吴益飞. SGCMGs驱动的挠性航天器有限时间自适应鲁棒控制[J]. 自动化学报, 2021, 47(3): 641-651.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
钟声, 黄一, 胡锦昌. 深空探测航天器姿态的自抗扰控制[J]. 控制理论与应用, 2019, 36(12): 2028-2034.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
宋晓娟, 王宏伟, 岳宝增. 测量不确定的充液航天器自适应鲁棒容错控制[J]. 宇航学报, 2022, 43(5): 638-648.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
康国华, 金晨迪, 郭玉洁, 等. 基于深度学习的组合体航天器模型预测控制[J]. 宇航学报, 2019, 40(11): 1322-1331.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
刘丽丽, 左继红. 四旋翼飞行器的轨迹跟踪自校正预测控制[J]. 控制工程, 2020, 27(10): 1838-1844.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
宁昕, 武耀发. 自由漂浮空间机器人轨迹跟踪的模型预测控制[J]. 控制理论与应用, 2019, 36(5): 687-696.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
于中奇, 杜昭平, 王伟然. 基于模型预测控制的永磁同步电机改进自抗扰系统研究[J]. 传感器与微系统, 2022, 41(7): 52-56.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
李广剑, 何广军, 吴亚晖, 等. 无虚拟控制律的高超声速飞行器新型模糊控制[J]. 航天控制, 2020, 38(4): 40-48.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
刘益军, 李正强, 赖建防, 等. 基于模糊控制的智能验电接地机器人机械臂运动控制研究[J]. 自动化与仪表, 2022, 37(7): 54-57+92.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
刘金琨. 智能控制[M]. 北京: 清华大学出版社, 2019: 64-101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |