
通信拒止环境下的导弹集群多目标分配与决策方法*
Multi-target Assignment Method for Missile Swarms in Communication Denied Environments
针对通信拒止复杂环境下的导弹集群多目标分配问题,提出一种分布式的多目标分配与决策方法。基于弹-目攻防性能指标,设计时间戳、获胜导弹、获胜投标、优势度等列表,通过一致性和拍卖阶段,优化目标分配方案,并借鉴自然界鸟群、鱼群等群居性生物的群体协同运动机制,利用“避撞-结队-聚集-攻击”集群行为规则模型(Separation Alignment Cohesion Offense,SACO),结合集群动态拓扑交互机制,建立支持不同通信拒止等级环境下的导弹集群运动决策模型,使导弹集群涌现出宏观的作战行为。仿真结果表明,本文设计的方法能够在不同通信拒止等级条件下进行多目标分配和决策,涌现出宏观的集群作战行为,并具有较好的优化性能,其计算效率相对于其他方法具有更明显的优势。
Aiming at the problem of multi-target assignment of missile swarms under communication denied environments, a distributed multi-target assignment method is proposed. Through implementation of the consistency and auction stages, the target allocation scheme is optimized. Inspired by the swarm cooperative movement mechanism of social creatures such as flocks of birds and fishes in nature, the kinematic model of the missile swarm is established by using the separation alignment cohesion offense (SACO) swarm behavior rules and the swarm dynamic topology interaction mechanism. The missile swarm emerge macroscopic combat behaviors are being caused in different levels of communication denied environments. The simulation results show that the method designed in this paper can work out the target allocation decisions under different communication denial levels and has better optimization performance than the other methods.
导弹 / 拒止环境 / 多目标分配 / 集群协同 {{custom_keyword}} /
Missile / Denied Environments / Multi-target Assignment / Swarm collaboration {{custom_keyword}} /
表1 导弹初始态势表 |
编号 | X/km | Y/km | Z/km | 速度/(m·s-1) | 仰角φ/rad | 方位角α/rad | 过载 |
---|---|---|---|---|---|---|---|
0 | 16.22 | 14.88 | 19.8 | 2635.22 | -0.05 | -0.51 | -3.75 |
1 | 24.33 | 21.6 | 15.26 | 2984.38 | 0.88 | 2.82 | 6.7 |
2 | 19.62 | 12.68 | 24.43 | 2566.98 | 0.92 | -1.19 | 9.9 |
3 | 25.02 | 17.05 | 20.42 | 2181.59 | -1.1 | -3.13 | -9.28 |
4 | 12.14 | 19.64 | 24.01 | 3080.05 | 0.48 | -1.54 | -2.78 |
5 | 21.46 | 20.58 | 20.91 | 2610.03 | 1.18 | 0.21 | -8.88 |
6 | 16.93 | 13.14 | 20 | 2114.93 | -0.83 | -2.33 | 2.62 |
7 | 27.44 | 11.25 | 23.37 | 2916.77 | -0.47 | 1.74 | 9.07 |
8 | 29.83 | 21.71 | 15.91 | 2725.92 | 0.02 | -2.18 | -0.56 |
9 | 11.34 | 14.88 | 17.95 | 3280.83 | 0.05 | 1.04 | 6.64 |
10 | 16.21 | 18.55 | 20.36 | 2546.41 | 0.69 | -0.41 | -2.9 |
11 | 28.87 | 23.92 | 18.89 | 2090.56 | -0.01 | -3.01 | 9.31 |
12 | 28.45 | 19.47 | 19.94 | 3266.46 | 1.42 | 1.94 | 0.85 |
13 | 12.96 | 14.76 | 22.77 | 3264.4 | -1.26 | -1.48 | -6.35 |
14 | 17.12 | 29.23 | 22.23 | 2538.05 | 1.04 | -2.67 | 2.12 |
表2 目标初始态势表 |
编号 | X/km | Y/km | Z/km | 速度/(m·s-1) | 仰角/rad | 方位角/rad | 体积 | 价值 |
---|---|---|---|---|---|---|---|---|
0 | -8.44 | -17.43 | 0 | 25 | 0 | -2.22 | 1 | 1 |
1 | -34.22 | -7.2 | 0 | 10 | 0 | 1.64 | 4 | 4 |
2 | -26.97 | -34.09 | 0 | 22 | 0 | -0.44 | 1.2 | 1.2 |
3 | -9.15 | -22.16 | 0 | 22 | 0 | -2.62 | 1.2 | 1.2 |
4 | -11.33 | -22.66 | 0 | 20 | 0 | -0.15 | 1.5 | 2 |
5 | -22.55 | -25.58 | 0 | 20 | 0 | 0.12 | 1.5 | 2 |
6 | -15.64 | -30.6 | 0 | 25 | 0 | -0.84 | 1 | 1 |
7 | -33.13 | -12.7 | 0 | 10 | 0 | 2.21 | 4 | 4 |
8 | -11.21 | -8.04 | 0 | 22 | 0 | 0.86 | 1.2 | 1.2 |
9 | -18.66 | -34.72 | 0 | 25 | 0 | 2.13 | 1 | 1 |
[1] |
商巍, 赵涛, 环夏, 等. 导弹武器系统协同作战研究[J]. 战术导弹技术. 2018 (2): 31-35.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
任章, 郭栋, 董希旺, 等. 飞行器集群协同制导控制方法及应用研究[J]. 导航定位与授时. 2019, 6(5): 1-9.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
李磊, 王彤, 胡勤莲, 等. DARPA 拒止环境中协同作战项目白军网络研究[J]. 航天电子对抗. 2018, 34(6): 54-59.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
张贇, 邱忠宇, 蔡云泽. 基于偏好联盟博弈的导弹集群分布式任务分配模型[J]. 空天防御. 2021, 4(3): 24-32.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
范云锋, 惠轶, 邱令存. 网络化防空作战目标分配方法研究[J]. 航天控制. 2013, 31(6): 82-86.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
黄勇, 李小将, 张东来, 等. 分布式卫星系统在轨操作的多目标分配[J]. 宇航学报. 2013, 34(11):1475- 1482.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
陈菲, 路长厚, 潘伟, 等. 微型卫星集群系统协同任务下的目标分配研究[J]. 宇航学报. 2010, 31(5): 1374-1380.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
朱建文, 赵长见, 李小平, 等. 基于强化学习的集群多目标分配与智能决策方法[J]. 兵工学报. 2021, 42(9): 2040-2048.
(
A reinforcement learning-based swarm intelligent decision-making method of cooperative multi-target attack under high-dynamic situation is proposed. The composite evaluation criteria of attack performance is established, including the evaluation of attack superiority based on relative motion information and the threat evaluation based on the inherent information of target. To evaluate the attack-defence effectiveness, a cost-effectiveness ratio index is designed by combining attack performance, penetration probability and attack cost together. In addition, a multi-target decision-making architecture based on reinforcement learning is constructed, and an action space with allocation vectors as basic elements and a state space based on quantified performance indicators are designed. Q-Learning is employed to make intelligent decisions on cooperative attack plans, including missile selection and target assignment. The simulated results show that reinforcement learning can achieve multi-target online decision-making with the optimal offensive and defensive effectiveness, and its computational efficiency has more obvious advantages than that of particle swarm optimizer.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
杨秀霞, 周硙硙, 罗超, 等. 反舰导弹智能化作战在线任务分配研究[J]. 导航定位与授时. 2016, 3(4): 38-41.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
廖沫, 刘洋, 莫文骥, 等. 战术导弹协同任务规划研究[J]. 航天控制. 2016, 34(4): 70-75.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
邢冬静. 无人机集群作战自主任务规划方法研究[D]. 南京: 南京航空航天大学, 2019.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |