
两种典型异构星座摄动轨道偏置与保持控制*
Perturbed Orbit Offset Deployment and Configuration Maintenance of Two Typical Heterogeneous Constellations
分析了低中高不同轨道高度受摄演化规律,针对2种典型的异构混合星座,提出了星座部署偏置量计算方法及星座构型保持控制策略。算例表明,合理利用入轨轨道参数偏置和摄动运动保持控制,可以实现异构星座卫星最优协同工作。
The perturbation evolution laws of low, medium and high orbital heights are analyzed. Regarding two typical heterogeneous constellations, the optimal offset calculation method of orbit deployment and the constellation configuration keeping control strategy are designed. Examples show that the optimal coordination of heterogeneous constellation satellites can be realized using orbit development bias and perturbation motion keeping control.
异构星座 / 摄动分析 / 偏置部署 / 保持控制 {{custom_keyword}} /
Heterogeneous constellations / Perturbation analysis / Orbit bias / Keep control {{custom_keyword}} /
表1 文献[1]中6颗卫星轨道参数 |
a/km | e | i/(°) | Ω | ω/(°) | f/(°) | |
---|---|---|---|---|---|---|
Ⅰ | 16763 | 0.53 | 63.435 | 69 | 270 | 90 |
Ⅱ | 16763 | 0.53 | 63.435 | 69 | 270 | 191 |
Ⅲ | 16763 | 0.53 | 63.435 | 249 | 270 | 90 |
Ⅳ | 16763 | 0.53 | 63.435 | 249 | 270 | 191 |
Ⅴ | 16763 | 0 | 0 | 30 | 0 | 0 |
Ⅵ | 16763 | 0 | 0 | 210 | 0 | 0 |
表2 120个整周期后轨道参数增量 |
Δi/(°) | ΔΩ/(°) | Δω/(°) | Δλ/(°) | |
---|---|---|---|---|
Ⅰ | 0.0083 | -8.8565 | 0 | - |
Ⅴ | 0.0064 | - | - | 10.26 |
表3 文献[6]中10颗卫星轨道参数 |
a/km | e | i/(°) | Ω/(°) | ω/(°) | f/(°) | |
---|---|---|---|---|---|---|
A1 | 8714.027 | 0 | 107.1545 | 47.7809 | 0 | 0 |
A2 | 8714.027 | 0 | 107.1545 | 47.7809 | 0 | 120 |
A3 | 8714.027 | 0 | 107.1545 | 47.7809 | 0 | 240 |
B1 | 8714.027 | 0 | 107.1545 | 87.1559 | 0 | 60 |
B2 | 8714.027 | 0 | 107.1545 | 87.1559 | 0 | 180 |
B3 | 8714.027 | 0 | 107.1545 | 87.1559 | 0 | 330 |
C1 | 7012.537 | 0 | 97.9284 | 67.468 | 0 | 0 |
C2 | 7012.537 | 0 | 97.9284 | 67.468 | 0 | 90 |
C3 | 7012.537 | 0 | 97.9284 | 67.468 | 0 | 180 |
C4 | 7012.537 | 0 | 97.9284 | 67.468 | 0 | 270 |
表4 360天后轨道参数增量 |
Δi/(°) | ΔΩ/(°) | Δu/(°) | |
---|---|---|---|
A1 | 0.0072 | 355.18 | 322.25 |
B1 | 0.0215 | 355.18 | 322.25 |
C1 | 0.0020 | 355.29 | 241.71 |
表5 异构预警星座倾角保持控制频次与速度增量 |
1个月 | 3个月 | 6个月 | 1年 | ||
---|---|---|---|---|---|
I | Δi/(°) | 0.0083 | 0.0249 | 0.0499 | 0.1001 |
Δvz/(m/s) | 0.833 | 2.499 | 5.008 | 10.046 | |
V | Δi/(°) | 0.0064 | 0.0195 | 0.0393 | 0.0800 |
Δvz/(m/s) | 0.545 | 1.659 | 3.345 | 6.808 |
表6 双层协同星座轨道面保持控制频次与速度增量 |
1个月 | 3个月 | 6个月 | 1年 | ||
---|---|---|---|---|---|
A1 | Δi/(°) | 0.0016 | 0.0046 | 0.0091 | 0.0173 |
Δvz/(m/s) | 0.1889 | 0.5430 | 1.0742 | 2.0421 | |
B1 | Δi/(°) | 0.0031 | 0.0089 | 0.0175 | 0.0331 |
Δvz/(m/s) | 0.3660 | 1.0506 | 2.0657 | 3.9072 | |
C1 | Δi/(°) | 0.0027 | 0.0078 | 0.0155 | 0.0300 |
Δvz/(m/s) | 0.3553 | 1.0264 | 2.0396 | 3.9476 |
[1] |
张雅声, 冯飞. 卫星星座轨道设计方法[M]. 北京: 国防工业出版社, 2019.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
谭田, 杨芳. 环境减灾-1A、1B卫星星座轨道设计[J]. 航天器工程, 2009, 18(6): 27-30.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
张润宁, 姜秀鹏. 环境一号C卫星系统总体设计及其在轨验证[J]. 雷达学报, 2014, 3(3): 249-255.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
张雅声, 姚勇. 异构预警卫星星座设计与分析[J]. 装备指挥技术学院学报, 2009, 20(3): 47-51.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
王茂才, 罗鑫, 宋志明, 等. 双层协同对地观测卫星星座设计[J]. 华中科技大学学报(自然科学版), 2018, 46(2): 100-105.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
李意, 徐冰. 加拿大“雷达卫星星座任务”及应用领域[J]. 国际太空, 2019, 7: 30-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
蒋虎, 邓雷, 余金培. 北斗导航星座现状仿真分析与定量评估[J]. 天文研究与技术, 2020, 17(2): 171-177.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
孙俞, 沈红新. 基于TLE的低轨巨星座控制研究[J]. 力学与实践, 2020, 42(2): 156-162.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
何丽娜. 不同摄动力对低中高轨航天器轨道的影响分析[J]. 大地测量与地球动力学, 2017, 37(11): 1156-1160.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
李恒年, 李济生, 焦文海. 全球星摄动运动及摄动补偿运控策略[J]. 宇航学报, 2010, 31(7): 1756-1761.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
李恒年. 地球静止卫星轨道与共位控制技术[M]. 北京: 国防工业出版社,2010年10月第1版.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
姜宇, 李恒年, 宝音贺西. Walker星座摄动分析与保持控制策略[J]. 空间控制技术与应用, 2013, 39(2): 36-41.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
钱山, 李恒年, 伍升钢. MEO非共振轨道导航星座摄动补偿控制[J]. 国防科技大学学报, 2014, 36(2): 53-60.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
陈雨, 赵灵峰, 刘会节, 等. 低轨Walker星座构型演化及维持控制[J]. 宇航学报, 2019, 40(11): 1296-1303.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
陈长春, 林滢, 沈鸣, 等. 一种考虑摄动影响的星座构型稳定性设计方法[J]. 上海航天, 2020, 37(1): 33-37.
(
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
A general perturbation solution to a restricted low-thrust Lambert rendezvous problem, considering circular-to-circular in-plane maneuvers using tangential thrust and including a coast arc, is developed. This provides a fully analytical solution to the satellite reconnaissance problem. The solution requires no iteration. Its speed and simplicity allow problems involving numerous spacecraft and maneuvers to be studied; this is demonstrated through two case studies. In the first, a range of maneuvers providing a rapid flyover of Los Angeles is generated, giving an insight to the trade space and allowing the maneuver that best fulfills the mission to be selected. A reduction in flyover time from 13.8 to 1.6 days is possible using a less than 17 m/s velocity change. A comparison with a numerical propagator including atmospheric friction and an 18th-order tesseral model shows 4 s of difference in the time of flyover. A second study considers a constellation of 24 satellites that can maneuver into repeating ground track orbits to provide persistent coverage of a region. A set of maneuvers for all satellites is generated for four sequential targets, allowing the most suitable maneuver strategy to be selected. Improvements in coverage of greater than 10 times are possible as compared to a static constellation using 35% of the propellant available across the constellation.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |